# Total Spillover Indexsp <-G.spillover(VAR_4, n.ahead =10, standardized = F )sp
Stocks Bonds Commodities FX
Stocks 88.757002 7.291185 0.3453279 3.606486
Bonds 10.213545 81.445712 2.7269737 5.613770
Commodities 0.468118 3.695953 93.6941893 2.141740
FX 5.691579 7.026017 1.5477592 85.734645
C. to others (spillover) 16.373241 18.013154 4.6200608 11.361996
C. to others including own 105.130243 99.458866 98.3142500 97.096641
C. from others
Stocks 11.242998
Bonds 18.554288
Commodities 6.305811
FX 14.265355
C. to others (spillover) 12.592113
C. to others including own 400.000000
The total volatility spillover appears in the lower right corner of Table, which indicates that, on average, across our entire sample, 12.6% of the volatility forecast error variance in all four markets comes from spillovers
Spillover::net(sp)
Warning in Spillover::net(sp): 'Spillover::net' is deprecated.
Use 'dynamic.spillover' instead.
See help("Deprecated")
To From Net Transmitter
Stocks 16.373241 11.242998 5.1302430 TRUE
Bonds 18.013154 18.554288 -0.5411342 FALSE
Commodities 4.620061 6.305811 -1.6857500 FALSE
FX 11.361996 14.265355 -2.9033588 FALSE
7.5 Dynamic Spillover Index / rolling-sample total volatility spillover
# Data Settingdata(dy2012)dy2012$Date <-as.Date(dy2012$Date, "%Y-%m-%d")dy2012 <-as.zoo(dy2012[,-1], order.by = dy2012$Date)class(dy2012)
[1] "zoo"
# Generalized rolling spillover index based on a VAR(4)G_index<-total.dynamic.spillover(dy2012, width =200, index="generalized", p=4) head(G_index, n=10)